Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell Rep Med ; 3(12): 100849, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: covidwho-2278940

RESUMO

Direct in vivo investigation of human placenta trophoblast's susceptibility to SARS-CoV-2 is challenging. Here we report that human trophoblast stem cells (hTSCs) and their derivatives are susceptible to SARS-CoV-2 infection, which reveals heterogeneity in hTSC cultures. Early syncytiotrophoblasts (eSTBs) generated from hTSCs have enriched transcriptomic features of peri-implantation trophoblasts, express high levels of angiotensin-converting enzyme 2 (ACE2), and are productively infected by SARS-CoV-2 and its Delta and Omicron variants to produce virions. Antiviral drugs suppress SARS-CoV-2 replication in eSTBs and antagonize the virus-induced blockage of STB maturation. Although less susceptible to SARS-CoV-2 infection, trophoblast organoids originating from hTSCs show detectable viral replication reminiscent of the uncommon placental infection. These findings implicate possible risk of COVID-19 infection in peri-implantation embryos, which may go unnoticed. Stem cell-derived human trophoblasts such as eSTBs can potentially provide unlimited amounts of normal and genome-edited cells and facilitate coronavirus research and antiviral discovery.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Humanos , Feminino , Gravidez , SARS-CoV-2 , Trofoblastos , Placenta , Peptidil Dipeptidase A/genética , Antivirais/farmacologia
2.
J Med Virol ; : e28326, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: covidwho-2233994

RESUMO

The initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants, BA.1 and BA.2, are being progressively displaced by BA.5 in many countries. To provide insight on the replacement of BA.2 by BA.5 as the dominant SARS-CoV-2 variant, we performed a comparative analysis of Omicron BA.2.12.1 and BA.5.2 variants in cell culture and hamster models. We found that BA.5.2 exhibited enhanced replicative kinetics over BA.2.12.1 in vitro and in vivo, which is evidenced by the dominant BA.5.2 viral genome detected at different time points, regardless of immune selection pressure with vaccine-induced serum antibodies. Utilizing reverse genetics, we constructed a mutant SARS-CoV-2 carrying spike F486V substitution, which is an uncharacterized mutation that concurrently discriminates Omicron BA.5.2 from BA.2.12.1 variant. We noticed that the 486th residue does not confer viral replication advantage to the virus. We also found that 486V displayed generally reduced immune evasion capacity when compared with its predecessor, 486F. However, the surge of fitness in BA.5.2 over BA.2.12.1 was not due to stand-alone F486V substitution but as a result of the combination of multiple mutations. Our study upholds the urgency for continuous monitoring of SARS-CoV-2 Omicron variants with enhanced replication fitness.

3.
Nat Commun ; 13(1): 7907, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: covidwho-2185829

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. Angiotensin-converting enzyme 2 (ACE2) is an entry receptor for SARS-CoV-2. The full-length membrane form of ACE2 (memACE2) undergoes ectodomain shedding to generate a shed soluble form (solACE2) that mediates SARS-CoV-2 entry via receptor-mediated endocytosis. Currently, it is not known how the physiological regulation of ACE2 shedding contributes to the etiology of COVID-19 in vivo. The present study identifies Membrane-type 1 Matrix Metalloproteinase (MT1-MMP) as a critical host protease for solACE2-mediated SARS-CoV-2 infection. SARS-CoV-2 infection leads to increased activation of MT1-MMP that is colocalized with ACE2 in human lung epithelium. Mechanistically, MT1-MMP directly cleaves memACE2 at M706-S to release solACE218-706 that binds to the SARS-CoV-2 spike proteins (S), thus facilitating cell entry of SARS-CoV-2. Human solACE218-706 enables SARS-CoV-2 infection in both non-permissive cells and naturally insusceptible C57BL/6 mice. Inhibition of MT1-MMP activities suppresses solACE2-directed entry of SARS-CoV-2 in human organoids and aged mice. Both solACE2 and circulating MT1-MMP are positively correlated in plasma of aged mice and humans. Our findings provide in vivo evidence demonstrating the contribution of ACE2 shedding to the etiology of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Interações Hospedeiro-Patógeno , Metaloproteinase 14 da Matriz , SARS-CoV-2 , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Camundongos Endogâmicos C57BL , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
Cell Rep Med ; 3(10): 100774, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: covidwho-2050073

RESUMO

"Pan-coronavirus" antivirals targeting conserved viral components can be designed. Here, we show that the rationally engineered H84T-banana lectin (H84T-BanLec), which specifically recognizes high mannose found on viral proteins but seldom on healthy human cells, potently inhibits Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (including Omicron), and other human-pathogenic coronaviruses at nanomolar concentrations. H84T-BanLec protects against MERS-CoV and SARS-CoV-2 infection in vivo. Importantly, intranasally and intraperitoneally administered H84T-BanLec are comparably effective. Mechanistic assays show that H84T-BanLec targets virus entry. High-speed atomic force microscopy depicts real-time multimolecular associations of H84T-BanLec dimers with the SARS-CoV-2 spike trimer. Single-molecule force spectroscopy demonstrates binding of H84T-BanLec to multiple SARS-CoV-2 spike mannose sites with high affinity and that H84T-BanLec competes with SARS-CoV-2 spike for binding to cellular ACE2. Modeling experiments identify distinct high-mannose glycans in spike recognized by H84T-BanLec. The multiple H84T-BanLec binding sites on spike likely account for the drug compound's broad-spectrum antiviral activity and the lack of resistant mutants.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , SARS-CoV-2 , Lectinas/farmacologia , Manose/farmacologia , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus/farmacologia , Antivirais/farmacologia
5.
J Biol Chem ; 298(11): 102511, 2022 11.
Artigo em Inglês | MEDLINE | ID: covidwho-2031421

RESUMO

Revealing the mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry and cell-to-cell spread might provide insights for understanding the underlying mechanisms of viral pathogenesis, tropism, and virulence. The signaling pathways involved in SARS-CoV-2 entry and viral spike-mediated cell-to-cell fusion remain elusive. In the current study, we found that macropinocytosis inhibitors significantly suppressed SARS-CoV-2 infection at both the entry and viral spike-mediated cell-to-cell fusion steps. We demonstrated that SARS-CoV-2 entry required the small GTPase Rac1 and its effector kinase p21-activated kinase 1 by dominant-negative and RNAi assays in human embryonic kidney 293T-angiotensin-converting enzyme 2 cells and that the serine protease transmembrane serine protease 2 reversed the decrease in SARS-CoV-2 entry caused by the macropinocytosis inhibitors. Moreover, in the cell-to-cell fusion assay, we confirmed that macropinocytosis inhibitors significantly decreased viral spike-mediated cell-to-cell fusion. Overall, we provided evidence that SARS-CoV-2 utilizes a macropinocytosis pathway to enter target cells and to efficiently promote viral spike-mediated cell-to-cell fusion.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Fusão Celular , Internalização do Vírus , Serina Proteases
6.
Emerg Microbes Infect ; 11(1): 2093-2101, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1978182

RESUMO

The replication and pathogenicity of SARS-CoV-2 Omicron BA.2 are comparable to that of BA.1 in experimental animal models. However, BA.2 has rapidly emerged to overtake BA.1 to become the predominant circulating SARS-CoV-2 variant worldwide. Here, we compared the replication fitness of BA.1 and BA.2 in cell culture and in the Syrian hamster model of COVID-19. Using a reverse genetics approach, we found that the BA.1-specific spike mutation G496S compromises its replication fitness, which may contribute to BA.1 being outcompeted by BA.2 in the real world. Additionally, the BA.1-unique G496S substitution confers differentiated sensitivity to therapeutic monoclonal antibodies, which partially recapitulates the immunoevasive phenotype of BA.1 and BA.2. In summary, our study identified G496S as an important determinant during the evolutionary trajectory of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais , Cricetinae , Humanos , Mesocricetus , Mutação de Sentido Incorreto , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
7.
J Med Virol ; 94(12): 6078-6090, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1976744

RESUMO

Single-cycle infectious virus can elicit close-to-natural immune response and memory. One approach to generate single-cycle severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is through deletion of structural genes such as spike (S) and nucleocapsid (N). Transcomplementation of the resulting ΔS or ΔN virus through enforced expression of S or N protein in the cells gives rise to a live but unproductive virus. In this study, ΔS and ΔN BAC clones were constructed and their live virions were rescued by transient expression of S and N proteins from the ancestral and the Omicron strains. ΔS and ΔN virions were visualized by transmission electron microscopy. Virion production of ΔS was more efficient than that of ΔN. The coated S protein from ΔS was delivered to infected cells in which the expression of N protein was also robust. In contrast, expression of neither S nor N was detected in ΔN-infected cells. ΔS underwent viral RNA replication, induced type I interferon (IFN) response, but did not form plaques. Despite RNA replication in cells, ΔS infection did not produce viral progeny in culture supernatant. Interestingly, viral RNA replication was not further enhanced upon overexpression of S protein. Taken together, our work provides a versatile platform for development of single-cycle vaccines for SARS-CoV-2.


Assuntos
COVID-19 , Interferon Tipo I , Vacinas contra COVID-19 , Humanos , Interferon Tipo I/genética , RNA Viral/genética , Replicon , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
8.
Int J Biol Sci ; 18(12): 4744-4755, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1954694

RESUMO

Viruses exploit the host lipid metabolism machinery to achieve efficient replication. We herein characterize the lipids profile reprogramming in vitro and in vivo using liquid chromatography-mass spectrometry-based untargeted lipidomics. The lipidome of SARS-CoV-2-infected Caco-2 cells was markedly different from that of mock-infected samples, with most of the changes involving downregulation of ceramides. In COVID-19 patients' plasma samples, a total of 54 lipids belonging to 12 lipid classes that were significantly perturbed compared to non-infected control subjects' plasma samples were identified. Among these 12 lipid classes, ether-linked phosphatidylcholines, ether-linked phosphatidylethanolamines, phosphatidylcholines, and ceramides were the four most perturbed. Pathway analysis revealed that the glycerophospholipid, sphingolipid, and ether lipid metabolisms pathway were the most significantly perturbed host pathways. Phosphatidic acid phosphatases (PAP) were involved in all three pathways and PAP-1 deficiency significantly suppressed SARS-CoV-2 replication. siRNA knockdown of LPIN2 and LPIN3 resulted in significant reduction of SARS-CoV-2 load. In summary, these findings characterized the host lipidomic changes upon SARS-CoV-2 infection and identified PAP-1 as a potential target for intervention for COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Células CACO-2 , Ceramidas , Éteres , Glicerofosfolipídeos , Humanos , Metabolismo dos Lipídeos , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo
9.
Int J Biol Sci ; 18(12): 4781-4791, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1954684

RESUMO

Rapid development and successful use of vaccines against SARS-CoV-2 might hold the key to curb the ongoing pandemic of COVID-19. Emergence of vaccine-evasive SARS-CoV-2 variants of concern (VOCs) has posed a new challenge to vaccine design and development. One urgent need is to determine what types of variant-specific and bivalent vaccines should be developed. Here, we compared homotypic and heterotypic protection against SARS-CoV-2 infection of hamsters with monovalent and bivalent whole-virion inactivated vaccines derived from representative VOCs. In addition to the ancestral SARS-CoV-2 Wuhan strain, Delta (B.1.617.2; δ) and Theta (P.3; θ) variants were used in vaccine preparation. Additional VOCs including Omicron (B.1.1.529) and Alpha (B.1.1.7) variants were employed in the challenge experiment. Consistent with previous findings, Omicron variant exhibited the highest degree of immune evasion, rendering all different forms of inactivated vaccines substantially less efficacious. Notably, monovalent and bivalent Delta variant-specific inactivated vaccines provided optimal protection against challenge with Delta variant. Yet, some cross-variant protection against Omicron and Alpha variants was seen with all monovalent and bivalent inactivated vaccines tested. Taken together, our findings support the notion that an optimal next-generation inactivated vaccine against SARS-CoV-2 should contain the predominant VOC in circulation. Further investigations are underway to test whether a bivalent vaccine for Delta and Omicron variants can serve this purpose.


Assuntos
COVID-19 , Vacinas Virais , Animais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Cricetinae , Humanos , SARS-CoV-2 , Vacinas Combinadas , Vacinas de Produtos Inativados
10.
Science ; 377(6604): 428-433, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: covidwho-1901908

RESUMO

The in vivo pathogenicity, transmissibility, and fitness of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron (B.1.1.529) variant are not well understood. We compared these virological attributes of this new variant of concern (VOC) with those of the Delta (B.1.617.2) variant in a Syrian hamster model of COVID-19. Omicron-infected hamsters lost significantly less body weight and exhibited reduced clinical scores, respiratory tract viral burdens, cytokine and chemokine dysregulation, and lung damage than Delta-infected hamsters. Both variants were highly transmissible through contact transmission. In noncontact transmission studies Omicron demonstrated similar or higher transmissibility than Delta. Delta outcompeted Omicron without selection pressure, but this scenario changed once immune selection pressure with neutralizing antibodies-active against Delta but poorly active against Omicron-was introduced. Next-generation vaccines and antivirals effective against this new VOC are therefore urgently needed.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/transmissão , Modelos Animais de Doenças , Mesocricetus , SARS-CoV-2/patogenicidade , Virulência
11.
Cell Mol Immunol ; 19(5): 588-601, 2022 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1830046

RESUMO

Live attenuated vaccines might elicit mucosal and sterilizing immunity against SARS-CoV-2 that the existing mRNA, adenoviral vector and inactivated vaccines fail to induce. Here, we describe a candidate live attenuated vaccine strain of SARS-CoV-2 in which the NSP16 gene, which encodes 2'-O-methyltransferase, is catalytically disrupted by a point mutation. This virus, designated d16, was severely attenuated in hamsters and transgenic mice, causing only asymptomatic and nonpathogenic infection. A single dose of d16 administered intranasally resulted in sterilizing immunity in both the upper and lower respiratory tracts of hamsters, thus preventing viral spread in a contact-based transmission model. It also robustly stimulated humoral and cell-mediated immune responses, thus conferring full protection against lethal challenge with SARS-CoV-2 in a transgenic mouse model. The neutralizing antibodies elicited by d16 effectively cross-reacted with several SARS-CoV-2 variants. Secretory immunoglobulin A was detected in the blood and nasal wash of vaccinated mice. Our work provides proof-of-principle evidence for harnessing NSP16-deficient SARS-CoV-2 for the development of live attenuated vaccines and paves the way for further preclinical studies of d16 as a prototypic vaccine strain, to which new features might be introduced to improve safety, transmissibility, immunogenicity and efficacy.


Assuntos
COVID-19 , SARS-CoV-2 , Administração Intranasal , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Cricetinae , Camundongos , Camundongos Transgênicos , Glicoproteína da Espícula de Coronavírus , Vacinas Atenuadas/genética
13.
Protein Cell ; 13(12): 940-953, 2022 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1777863

RESUMO

The emergence of SARS-CoV-2 variants of concern and repeated outbreaks of coronavirus epidemics in the past two decades emphasize the need for next-generation pan-coronaviral therapeutics. Drugging the multi-functional papain-like protease (PLpro) domain of the viral nsp3 holds promise. However, none of the known coronavirus PLpro inhibitors has been shown to be in vivo active. Herein, we screened a structurally diverse library of 50,080 compounds for potential coronavirus PLpro inhibitors and identified a noncovalent lead inhibitor F0213 that has broad-spectrum anti-coronaviral activity, including against the Sarbecoviruses (SARS-CoV-1 and SARS-CoV-2), Merbecovirus (MERS-CoV), as well as the Alphacoronavirus (hCoV-229E and hCoV-OC43). Importantly, F0213 confers protection in both SARS-CoV-2-infected hamsters and MERS-CoV-infected human DPP4-knockin mice. F0213 possesses a dual therapeutic functionality that suppresses coronavirus replication via blocking viral polyprotein cleavage, as well as promoting antiviral immunity by antagonizing the PLpro deubiquitinase activity. Despite the significant difference of substrate recognition, mode of inhibition studies suggest that F0213 is a competitive inhibitor against SARS2-PLpro via binding with the 157K amino acid residue, whereas an allosteric inhibitor of MERS-PLpro interacting with its 271E position. Our proof-of-concept findings demonstrated that PLpro is a valid target for the development of broad-spectrum anti-coronavirus agents. The orally administered F0213 may serve as a promising lead compound for combating the ongoing COVID-19 pandemic and future coronavirus outbreaks.


Assuntos
Proteases Semelhantes à Papaína de Coronavírus , SARS-CoV-2 , Animais , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Cricetinae , Humanos , Camundongos , Pandemias , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Tratamento Farmacológico da COVID-19
14.
Viruses ; 12(6)2020 06 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1726021

RESUMO

The ongoing Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) signals an urgent need for an expansion in treatment options. In this study, we investigated the anti-SARS-CoV-2 activities of 22 antiviral agents with known broad-spectrum antiviral activities against coronaviruses and/or other viruses. They were first evaluated in our primary screening in VeroE6 cells and then the most potent anti-SARS-CoV-2 antiviral agents were further evaluated using viral antigen expression, viral load reduction, and plaque reduction assays. In addition to remdesivir, lopinavir, and chloroquine, our primary screening additionally identified types I and II recombinant interferons, 25-hydroxycholesterol, and AM580 as the most potent anti-SARS-CoV-2 agents among the 22 antiviral agents. Betaferon (interferon-ß1b) exhibited the most potent anti-SARS-CoV-2 activity in viral antigen expression, viral load reduction, and plaque reduction assays among the recombinant interferons. The lipogenesis modulators 25-hydroxycholesterol and AM580 exhibited EC50 at low micromolar levels and selectivity indices of >10.0. Combinational use of these host-based antiviral agents with virus-based antivirals to target different processes of the SARS-CoV-2 replication cycle should be evaluated in animal models and/or clinical trials.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Animais , Antígenos Virais/imunologia , Betacoronavirus/imunologia , Betacoronavirus/metabolismo , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Humanos , Interferons/metabolismo , Lipogênese/efeitos dos fármacos , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Transdução de Sinais/efeitos dos fármacos , Células Vero , Carga Viral/efeitos dos fármacos , Ensaio de Placa Viral , Replicação Viral/efeitos dos fármacos
15.
Cell Biosci ; 11(1): 215, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: covidwho-1582012

RESUMO

In February 2020, we highlighted the top nine important research questions on SARS-CoV-2 and COVID-19 concerning virus transmission, asymptomatic and presymptomatic virus shedding, diagnosis, treatment, vaccine development, origin of virus and viral pathogenesis. These and related questions are revisited at the end of 2021 to shed light on the roadmap of bringing an end to the pandemic.

16.
Cell Discov ; 7(1): 100, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: covidwho-1493085

RESUMO

Coronavirus Disease 2019 (COVID-19) is predominantly a respiratory tract infection that significantly rewires the host metabolism. Here, we monitored a cohort of COVID-19 patients' plasma lipidome over the disease course and identified triacylglycerol (TG) as the dominant lipid class present in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced metabolic dysregulation. In particular, we pinpointed the lipid droplet (LD)-formation enzyme diacylglycerol acyltransferase (DGAT) and the LD stabilizer adipocyte differentiation-related protein (ADRP) to be essential host factors for SARS-CoV-2 replication. Mechanistically, viral nucleo capsid protein drives DGAT1/2 gene expression to facilitate LD formation and associates with ADRP on the LD surface to complete the viral replication cycle. DGAT gene depletion reduces SARS-CoV-2 protein synthesis without compromising viral genome replication/transcription. Importantly, a cheap and orally available DGAT inhibitor, xanthohumol, was found to suppress SARS-CoV-2 replication and the associated pulmonary inflammation in a hamster model. Our findings not only uncovered the mechanistic role of SARS-CoV-2 nucleocapsid protein to exploit LDs-oriented network for heightened metabolic demand, but also the potential to target the LDs-synthetase DGAT and LDs-stabilizer ADRP for COVID-19 treatment.

17.
Int J Biol Sci ; 17(6): 1555-1564, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1206436

RESUMO

The Coronavirus Disease 2019 (COVID-19) pandemic caused by the novel lineage B betacoroanvirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant mortality, morbidity, and socioeconomic disruptions worldwide. Effective antivirals are urgently needed for COVID-19. The main protease (Mpro) of SARS-CoV-2 is an attractive antiviral target because of its essential role in the cleavage of the viral polypeptide. In this study, we performed an in silico structure-based screening of a large chemical library to identify potential SARS-CoV-2 Mpro inhibitors. Among 8,820 compounds in the library, our screening identified trichostatin A, a histone deacetylase inhibitor and an antifungal compound, as an inhibitor of SARS-CoV-2 Mpro activity and replication. The half maximal effective concentration of trichostatin A against SARS-CoV-2 replication was 1.5 to 2.7µM, which was markedly below its 50% effective cytotoxic concentration (75.7µM) and peak serum concentration (132µM). Further drug compound optimization to develop more stable analogues with longer half-lives should be performed. This structure-based drug discovery platform should facilitate the identification of additional enzyme inhibitors of SARS-CoV-2.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Animais , Células CACO-2 , Chlorocebus aethiops , Simulação por Computador , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteases/química , Células Vero
18.
J Immunol ; 205(6): 1564-1579, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: covidwho-694818

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic human coronavirus causing severe disease and mortality. MERS-CoV infection failed to elicit robust IFN response, suggesting that the virus might have evolved strategies to evade host innate immune surveillance. In this study, we identified and characterized type I IFN antagonism of MERS-CoV open reading frame (ORF) 8b accessory protein. ORF8b was abundantly expressed in MERS-CoV-infected Huh-7 cells. When ectopically expressed, ORF8b inhibited IRF3-mediated IFN-ß expression induced by Sendai virus and poly(I:C). ORF8b was found to act at a step upstream of IRF3 to impede the interaction between IRF3 kinase IKKε and chaperone protein HSP70, which is required for the activation of IKKε and IRF3. An infection study using recombinant wild-type and ORF8b-deficient MERS-CoV further confirmed the suppressive role of ORF8b in type I IFN induction and its disruption of the colocalization of HSP70 with IKKε. Ectopic expression of HSP70 relieved suppression of IFN-ß expression by ORF8b in an IKKε-dependent manner. Enhancement of IFN-ß induction in cells infected with ORF8b-deficient virus was erased when HSP70 was depleted. Taken together, HSP70 chaperone is important for IKKε activation, and MERS-CoV ORF8b suppresses type I IFN expression by competing with IKKε for interaction with HSP70.


Assuntos
Ativação Enzimática/imunologia , Quinase I-kappa B/imunologia , Interferon Tipo I/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Proteínas Virais/imunologia , Betacoronavirus , COVID-19 , Linhagem Celular , Infecções por Coronavirus , Proteínas de Choque Térmico HSP70/imunologia , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Interferon Tipo I/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Pandemias , Pneumonia Viral , SARS-CoV-2 , Proteínas Virais/metabolismo
19.
Nature ; 593(7859): 418-423, 2021 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1137788

RESUMO

The COVID-19 pandemic is the third outbreak this century of a zoonotic disease caused by a coronavirus, following the emergence of severe acute respiratory syndrome (SARS) in 20031 and Middle East respiratory syndrome (MERS) in 20122. Treatment options for coronaviruses are limited. Here we show that clofazimine-an anti-leprosy drug with a favourable safety profile3-possesses inhibitory activity against several coronaviruses, and can antagonize the replication of SARS-CoV-2 and MERS-CoV in a range of in vitro systems. We found that this molecule, which has been approved by the US Food and Drug Administration, inhibits cell fusion mediated by the viral spike glycoprotein, as well as activity of the viral helicase. Prophylactic or therapeutic administration of clofazimine in a hamster model of SARS-CoV-2 pathogenesis led to reduced viral loads in the lung and viral shedding in faeces, and also alleviated the inflammation associated with viral infection. Combinations of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted viral shedding from the upper respiratory tract. Clofazimine, which is orally bioavailable and comparatively cheap to manufacture, is an attractive clinical candidate for the treatment of outpatients and-when combined with remdesivir-in therapy for hospitalized patients with COVID-19, particularly in contexts in which costs are an important factor or specialized medical facilities are limited. Our data provide evidence that clofazimine may have a role in the control of the current pandemic of COVID-19 and-possibly more importantly-in dealing with coronavirus diseases that may emerge in the future.


Assuntos
Antivirais/farmacologia , Clofazimina/farmacologia , Coronavirus/classificação , Coronavirus/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais/farmacocinética , Antivirais/uso terapêutico , Disponibilidade Biológica , Fusão Celular , Linhagem Celular , Clofazimina/farmacocinética , Clofazimina/uso terapêutico , Coronavirus/crescimento & desenvolvimento , Coronavirus/patogenicidade , Cricetinae , DNA Helicases/antagonistas & inibidores , Sinergismo Farmacológico , Feminino , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Masculino , Mesocricetus , Profilaxia Pré-Exposição , SARS-CoV-2/crescimento & desenvolvimento , Especificidade da Espécie , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
20.
Emerg Microbes Infect ; 10(1): 291-304, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1062822

RESUMO

Effective treatments for coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed. Dexamethasone has been shown to confer survival benefits to certain groups of hospitalized patients, but whether glucocorticoids such as dexamethasone and methylprednisolone should be used together with antivirals to prevent a boost of SARS-CoV-2 replication remains to be determined. Here, we show the beneficial effect of methylprednisolone alone and in combination with remdesivir in the hamster model of SARS-CoV-2 infection. Treatment with methylprednisolone boosted RNA replication of SARS-CoV-2 but suppressed viral induction of proinflammatory cytokines in human monocyte-derived macrophages. Although methylprednisolone monotherapy alleviated body weight loss as well as nasal and pulmonary inflammation, viral loads increased and antibody response against the receptor-binding domain of spike protein attenuated. In contrast, a combination of methylprednisolone with remdesivir not only prevented body weight loss and inflammation, but also dampened viral protein expression and viral loads. In addition, the suppressive effect of methylprednisolone on antibody response was alleviated in the presence of remdesivir. Thus, combinational anti-inflammatory and antiviral therapy might be an effective, safer and more versatile treatment option for COVID-19. These data support testing of the efficacy of a combination of methylprednisolone and remdesivir for the treatment of COVID-19 in randomized controlled clinical trials.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Metilprednisolona/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Anticorpos Antivirais/sangue , Antivirais/farmacologia , COVID-19/patologia , COVID-19/virologia , Citocinas/biossíntese , Citocinas/imunologia , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Humanos , Macrófagos/imunologia , Macrófagos/virologia , Masculino , Mesocricetus , Metilprednisolona/farmacologia , RNA Viral , Sistema Respiratório/patologia , Sistema Respiratório/virologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/imunologia , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA